3.1.97 \(\int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [97]

Optimal. Leaf size=187 \[ -\frac {\left (3 a^2+6 a b-b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{8 a^{3/2} f}+\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 a f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f} \]

[Out]

-1/8*(3*a^2+6*a*b-b^2)*arctanh(sec(f*x+e)*a^(1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))/a^(3/2)/f+arctanh(sec(f*x+e)*b^(
1/2)/(a-b+b*sec(f*x+e)^2)^(1/2))*b^(1/2)/f-1/8*(3*a+b)*cot(f*x+e)*csc(f*x+e)*(a-b+b*sec(f*x+e)^2)^(1/2)/a/f-1/
4*cot(f*x+e)*csc(f*x+e)^3*(a-b+b*sec(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.15, antiderivative size = 187, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3745, 478, 592, 537, 223, 212, 385, 213} \begin {gather*} -\frac {\left (3 a^2+6 a b-b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{8 a^{3/2} f}+\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)-b}}\right )}{f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{4 f}-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a+b \sec ^2(e+f x)-b}}{8 a f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^5*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-1/8*((3*a^2 + 6*a*b - b^2)*ArcTanh[(Sqrt[a]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/(a^(3/2)*f) + (Sqr
t[b]*ArcTanh[(Sqrt[b]*Sec[e + f*x])/Sqrt[a - b + b*Sec[e + f*x]^2]])/f - ((3*a + b)*Cot[e + f*x]*Csc[e + f*x]*
Sqrt[a - b + b*Sec[e + f*x]^2])/(8*a*f) - (Cot[e + f*x]*Csc[e + f*x]^3*Sqrt[a - b + b*Sec[e + f*x]^2])/(4*f)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 537

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 592

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c -
a*d)*(p + 1))), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 3745

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Dist[1/(f*ff^m), Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(m
 + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rubi steps

\begin {align*} \int \csc ^5(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx &=\frac {\text {Subst}\left (\int \frac {x^4 \sqrt {a-b+b x^2}}{\left (-1+x^2\right )^3} \, dx,x,\sec (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f}+\frac {\text {Subst}\left (\int \frac {x^2 \left (3 (a-b)+4 b x^2\right )}{\left (-1+x^2\right )^2 \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{4 f}\\ &=-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 a f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f}+\frac {\text {Subst}\left (\int \frac {(a-b) (3 a+b)+8 a b x^2}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{8 a f}\\ &=-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 a f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{f}+\frac {\left (3 a^2+6 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{\left (-1+x^2\right ) \sqrt {a-b+b x^2}} \, dx,x,\sec (e+f x)\right )}{8 a f}\\ &=-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 a f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f}+\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}+\frac {\left (3 a^2+6 a b-b^2\right ) \text {Subst}\left (\int \frac {1}{-1+a x^2} \, dx,x,\frac {\sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{8 a f}\\ &=-\frac {\left (3 a^2+6 a b-b^2\right ) \tanh ^{-1}\left (\frac {\sqrt {a} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{8 a^{3/2} f}+\frac {\sqrt {b} \tanh ^{-1}\left (\frac {\sqrt {b} \sec (e+f x)}{\sqrt {a-b+b \sec ^2(e+f x)}}\right )}{f}-\frac {(3 a+b) \cot (e+f x) \csc (e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{8 a f}-\frac {\cot (e+f x) \csc ^3(e+f x) \sqrt {a-b+b \sec ^2(e+f x)}}{4 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(1049\) vs. \(2(187)=374\).
time = 6.46, size = 1049, normalized size = 5.61 \begin {gather*} \frac {\sqrt {\frac {a+b+a \cos (2 (e+f x))-b \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (\frac {(-3 a \cos (e+f x)-b \cos (e+f x)) \csc ^2(e+f x)}{8 a}-\frac {1}{4} \cot (e+f x) \csc ^3(e+f x)\right )}{f}+\frac {\frac {\left (3 a^2-2 a b-b^2\right ) (1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \tanh ^{-1}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )-\sqrt {b} \left (2 \tanh ^{-1}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}-\frac {\left (3 a^2+14 a b-b^2\right ) (1+\cos (e+f x)) \sqrt {\frac {1+\cos (2 (e+f x))}{(1+\cos (e+f x))^2}} \sqrt {\frac {a+b+(a-b) \cos (2 (e+f x))}{1+\cos (2 (e+f x))}} \left (4 \sqrt {a} \tanh ^{-1}\left (\frac {-\sqrt {a} \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{2 \sqrt {b}}\right )+\sqrt {b} \left (2 \tanh ^{-1}\left (\tan ^2\left (\frac {1}{2} (e+f x)\right )-\frac {\sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}{\sqrt {a}}\right )+\log \left (a-2 b-a \tan ^2\left (\frac {1}{2} (e+f x)\right )+\sqrt {a} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}\right )\right )\right ) \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {\frac {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}{\left (1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{4 \sqrt {a} \sqrt {b} \sqrt {a+b+(a-b) \cos (2 (e+f x))} \sqrt {\left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2} \sqrt {4 b \tan ^2\left (\frac {1}{2} (e+f x)\right )+a \left (-1+\tan ^2\left (\frac {1}{2} (e+f x)\right )\right )^2}}}{8 a f} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Csc[e + f*x]^5*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(((-3*a*Cos[e + f*x] - b*Cos[e
 + f*x])*Csc[e + f*x]^2)/(8*a) - (Cot[e + f*x]*Csc[e + f*x]^3)/4))/f + (((3*a^2 - 2*a*b - b^2)*(1 + Cos[e + f*
x])*Sqrt[(1 + Cos[2*(e + f*x)])/(1 + Cos[e + f*x])^2]*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e +
f*x)])]*(4*Sqrt[a]*ArcTanh[(-(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(
e + f*x)/2]^2)^2])/(2*Sqrt[b])] - Sqrt[b]*(2*ArcTanh[Tan[(e + f*x)/2]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1
+ Tan[(e + f*x)/2]^2)^2]/Sqrt[a]] + Log[a - 2*b - a*Tan[(e + f*x)/2]^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 +
 a*(-1 + Tan[(e + f*x)/2]^2)^2]]))*(-1 + Tan[(e + f*x)/2]^2)*(1 + Tan[(e + f*x)/2]^2)*Sqrt[(4*b*Tan[(e + f*x)/
2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2)/(1 + Tan[(e + f*x)/2]^2)^2])/(4*Sqrt[a]*Sqrt[b]*Sqrt[a + b + (a - b)*Cos
[2*(e + f*x)]]*Sqrt[(-1 + Tan[(e + f*x)/2]^2)^2]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])
 - ((3*a^2 + 14*a*b - b^2)*(1 + Cos[e + f*x])*Sqrt[(1 + Cos[2*(e + f*x)])/(1 + Cos[e + f*x])^2]*Sqrt[(a + b +
(a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*(4*Sqrt[a]*ArcTanh[(-(Sqrt[a]*(-1 + Tan[(e + f*x)/2]^2)) + S
qrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2])/(2*Sqrt[b])] + Sqrt[b]*(2*ArcTanh[Tan[(e + f*x)/2
]^2 - Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]/Sqrt[a]] + Log[a - 2*b - a*Tan[(e + f*x)/2]
^2 + Sqrt[a]*Sqrt[4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]]))*(-1 + Tan[(e + f*x)/2]^2)*(1 + Ta
n[(e + f*x)/2]^2)*Sqrt[(4*b*Tan[(e + f*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2)/(1 + Tan[(e + f*x)/2]^2)^2])/(
4*Sqrt[a]*Sqrt[b]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]*Sqrt[(-1 + Tan[(e + f*x)/2]^2)^2]*Sqrt[4*b*Tan[(e + f
*x)/2]^2 + a*(-1 + Tan[(e + f*x)/2]^2)^2]))/(8*a*f)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(5377\) vs. \(2(165)=330\).
time = 0.31, size = 5378, normalized size = 28.76

method result size
default \(\text {Expression too large to display}\) \(5378\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e)^5, x)

________________________________________________________________________________________

Fricas [A]
time = 7.02, size = 1345, normalized size = 7.19 \begin {gather*} \left [-\frac {{\left ({\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 3 \, a^{2} + 6 \, a b - b^{2}\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) - 8 \, {\left (a^{2} \cos \left (f x + e\right )^{4} - 2 \, a^{2} \cos \left (f x + e\right )^{2} + a^{2}\right )} \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) - 2 \, {\left ({\left (3 \, a^{2} + a b\right )} \cos \left (f x + e\right )^{3} - {\left (5 \, a^{2} + a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{16 \, {\left (a^{2} f \cos \left (f x + e\right )^{4} - 2 \, a^{2} f \cos \left (f x + e\right )^{2} + a^{2} f\right )}}, \frac {{\left ({\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 3 \, a^{2} + 6 \, a b - b^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) + 4 \, {\left (a^{2} \cos \left (f x + e\right )^{4} - 2 \, a^{2} \cos \left (f x + e\right )^{2} + a^{2}\right )} \sqrt {b} \log \left (-\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + 2 \, b}{\cos \left (f x + e\right )^{2}}\right ) + {\left ({\left (3 \, a^{2} + a b\right )} \cos \left (f x + e\right )^{3} - {\left (5 \, a^{2} + a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{8 \, {\left (a^{2} f \cos \left (f x + e\right )^{4} - 2 \, a^{2} f \cos \left (f x + e\right )^{2} + a^{2} f\right )}}, -\frac {16 \, {\left (a^{2} \cos \left (f x + e\right )^{4} - 2 \, a^{2} \cos \left (f x + e\right )^{2} + a^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) + {\left ({\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 3 \, a^{2} + 6 \, a b - b^{2}\right )} \sqrt {a} \log \left (-\frac {2 \, {\left ({\left (a - b\right )} \cos \left (f x + e\right )^{2} + 2 \, \sqrt {a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right ) - 2 \, {\left ({\left (3 \, a^{2} + a b\right )} \cos \left (f x + e\right )^{3} - {\left (5 \, a^{2} + a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{16 \, {\left (a^{2} f \cos \left (f x + e\right )^{4} - 2 \, a^{2} f \cos \left (f x + e\right )^{2} + a^{2} f\right )}}, \frac {{\left ({\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} + 6 \, a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + 3 \, a^{2} + 6 \, a b - b^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a}\right ) - 8 \, {\left (a^{2} \cos \left (f x + e\right )^{4} - 2 \, a^{2} \cos \left (f x + e\right )^{2} + a^{2}\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{b}\right ) + {\left ({\left (3 \, a^{2} + a b\right )} \cos \left (f x + e\right )^{3} - {\left (5 \, a^{2} + a b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{8 \, {\left (a^{2} f \cos \left (f x + e\right )^{4} - 2 \, a^{2} f \cos \left (f x + e\right )^{2} + a^{2} f\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(((3*a^2 + 6*a*b - b^2)*cos(f*x + e)^4 - 2*(3*a^2 + 6*a*b - b^2)*cos(f*x + e)^2 + 3*a^2 + 6*a*b - b^2)*
sqrt(a)*log(-2*((a - b)*cos(f*x + e)^2 + 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x +
 e) + a + b)/(cos(f*x + e)^2 - 1)) - 8*(a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + e)^2 + a^2)*sqrt(b)*log(-((a - b)
*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos(f*x + e)
^2) - 2*((3*a^2 + a*b)*cos(f*x + e)^3 - (5*a^2 + a*b)*cos(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x
+ e)^2))/(a^2*f*cos(f*x + e)^4 - 2*a^2*f*cos(f*x + e)^2 + a^2*f), 1/8*(((3*a^2 + 6*a*b - b^2)*cos(f*x + e)^4 -
 2*(3*a^2 + 6*a*b - b^2)*cos(f*x + e)^2 + 3*a^2 + 6*a*b - b^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt(((a - b)*cos(f*x
+ e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) + 4*(a^2*cos(f*x + e)^4 - 2*a^2*cos(f*x + e)^2 + a^2)*sqrt(b)*log(
-((a - b)*cos(f*x + e)^2 + 2*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + 2*b)/cos
(f*x + e)^2) + ((3*a^2 + a*b)*cos(f*x + e)^3 - (5*a^2 + a*b)*cos(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/c
os(f*x + e)^2))/(a^2*f*cos(f*x + e)^4 - 2*a^2*f*cos(f*x + e)^2 + a^2*f), -1/16*(16*(a^2*cos(f*x + e)^4 - 2*a^2
*cos(f*x + e)^2 + a^2)*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)
/b) + ((3*a^2 + 6*a*b - b^2)*cos(f*x + e)^4 - 2*(3*a^2 + 6*a*b - b^2)*cos(f*x + e)^2 + 3*a^2 + 6*a*b - b^2)*sq
rt(a)*log(-2*((a - b)*cos(f*x + e)^2 + 2*sqrt(a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e
) + a + b)/(cos(f*x + e)^2 - 1)) - 2*((3*a^2 + a*b)*cos(f*x + e)^3 - (5*a^2 + a*b)*cos(f*x + e))*sqrt(((a - b)
*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/(a^2*f*cos(f*x + e)^4 - 2*a^2*f*cos(f*x + e)^2 + a^2*f), 1/8*(((3*a^2 +
6*a*b - b^2)*cos(f*x + e)^4 - 2*(3*a^2 + 6*a*b - b^2)*cos(f*x + e)^2 + 3*a^2 + 6*a*b - b^2)*sqrt(-a)*arctan(sq
rt(-a)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/a) - 8*(a^2*cos(f*x + e)^4 - 2*a^2*cos(f
*x + e)^2 + a^2)*sqrt(-b)*arctan(sqrt(-b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)/b) +
((3*a^2 + a*b)*cos(f*x + e)^3 - (5*a^2 + a*b)*cos(f*x + e))*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2))
/(a^2*f*cos(f*x + e)^4 - 2*a^2*f*cos(f*x + e)^2 + a^2*f)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc ^{5}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**5*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x)**5, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^5*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(t_

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^5} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^5,x)

[Out]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^5, x)

________________________________________________________________________________________